DE analysis between tissue samples

Tissue comparison AP-axis

Notebook for performing the DESeq2 analysis

Here we perform DEseq2 analysis for each tissue comparison, i.e. to identify the geens that change between the tissues.

This is performed on each condition separately.

    print(filepath)
Error in print(filepath) : object 'filepath' not found

Run each of the supplimentary DEseq 2 experiments

runDeseq2BetweenTissue(paste('merged_df_wt_fb-hb_FEATURE_COUNTS_', date, '.csv', sep=''), paste('DEseq2_CNS_wt_fb-hb_', date, '.csv', sep=''), condition_pos="fb")
[1] "../data/results/deseq2/merged_df_wt_fb-hb_FEATURE_COUNTS_20210124.csv"
[1] "========================== RUNNING merged_df_wt_fb-hb_FEATURE_COUNTS_20210124.csv ============================"
[1] "Dataset dimensions:  15189 12"
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
[1] "Deseq2 design:  ~"                   "Deseq2 design:  time + condition_id"

out of 15189 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 4570, 30%
LFC < 0 (down)     : 4257, 28%
outliers [1]       : 0, 0%
low counts [2]     : 0, 0%
(mean count < 7)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

log2 fold change (MLE): condition id 1 vs 0 
Wald test p-value: condition id 1 vs 0 
DataFrame with 15189 rows and 6 columns
                     baseMean log2FoldChange     lfcSE         stat       pvalue         padj
                    <numeric>      <numeric> <numeric>    <numeric>    <numeric>    <numeric>
18504-Pax2            2581.57       -7.72159 0.2014535     -38.3294  0.00000e+00  0.00000e+00
21375-Tbr1            5888.69        9.09244 0.2237556      40.6356  0.00000e+00  0.00000e+00
207667-Skor1          2280.05       -5.08910 0.1509651     -33.7104 4.06787e-249 2.05956e-245
54713-Fezf2           2137.53        8.85889 0.2646784      33.4704 1.30009e-245 4.93679e-242
18053-Ngfr            2133.24       -2.26346 0.0686299     -32.9807 1.53415e-238 4.66044e-235
...                       ...            ...       ...          ...          ...          ...
71583-9130008F23Rik   22.0738   -0.000634352  0.416585 -1.52274e-03     0.998785     0.999048
57431-Dnajc4         465.6501    0.000146053  0.141234  1.03412e-03     0.999175     0.999372
107986-Ddb2          324.7783   -0.000114246  0.143105 -7.98338e-04     0.999363     0.999495
23972-Papss2         184.6896   -0.000199504  0.499253 -3.99605e-04     0.999681     0.999747
69398-Cdhr4           63.5716    0.000030796  0.327945  9.39061e-05     0.999925     0.999925
runDeseq2BetweenTissue(paste('merged_df_ko_fb-mb_FEATURE_COUNTS_', date, '.csv', sep=''), paste('DEseq2_CNS_ko_fb-mb_', date, '.csv', sep=''), condition_pos="fb")
[1] "../data/results/deseq2/merged_df_ko_fb-mb_FEATURE_COUNTS_20210124.csv"
[1] "========================== RUNNING merged_df_ko_fb-mb_FEATURE_COUNTS_20210124.csv ============================"
[1] "Dataset dimensions:  15419 12"
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
[1] "Deseq2 design:  ~"                   "Deseq2 design:  time + condition_id"

out of 15419 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 1974, 13%
LFC < 0 (down)     : 2223, 14%
outliers [1]       : 0, 0%
low counts [2]     : 0, 0%
(mean count < 7)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

log2 fold change (MLE): condition id 1 vs 0 
Wald test p-value: condition id 1 vs 0 
DataFrame with 15419 rows and 6 columns
                baseMean log2FoldChange     lfcSE         stat      pvalue        padj
               <numeric>      <numeric> <numeric>    <numeric>   <numeric>   <numeric>
22326-Vax1       363.997        2.44168 0.1245576      19.6028 1.46343e-85 2.25647e-81
13162-Slc6a3     186.021       -2.68403 0.1406397     -19.0844 3.40073e-81 2.62179e-77
13195-Ddc        754.877       -1.52192 0.0816047     -18.6500 1.26357e-77 6.49434e-74
17260-Mef2c     1526.872        1.46683 0.0841923      17.4223 5.58448e-68 2.15268e-64
72961-Slc17a7    357.829        2.71418 0.1592171      17.0470 3.67790e-65 1.13419e-61
...                  ...            ...       ...          ...         ...         ...
59005-Trappc2l 1391.6255    4.29446e-05 0.0617906  6.95002e-04    0.999445    0.999686
330627-Trim66   410.4278    7.34667e-05 0.1152983  6.37188e-04    0.999492    0.999686
97086-Slc9b2     77.4063   -9.30080e-05 0.1799592 -5.16828e-04    0.999588    0.999717
50762-Fbxo6     437.1020   -3.30580e-05 0.0848144 -3.89769e-04    0.999689    0.999754
118453-Mmp28    403.3344    9.80980e-06 0.1182736  8.29416e-05    0.999934    0.999934
runDeseq2BetweenTissue(paste('merged_df_ko_fb-hb_FEATURE_COUNTS_', date, '.csv', sep=''), paste('DEseq2_CNS_ko_fb-hb_', date, '.csv', sep=''), condition_pos="fb")
[1] "../data/results/deseq2/merged_df_ko_fb-hb_FEATURE_COUNTS_20210124.csv"
[1] "========================== RUNNING merged_df_ko_fb-hb_FEATURE_COUNTS_20210124.csv ============================"
[1] "Dataset dimensions:  15470 12"
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
[1] "Deseq2 design:  ~"                   "Deseq2 design:  time + condition_id"

out of 15470 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 4120, 27%
LFC < 0 (down)     : 3573, 23%
outliers [1]       : 0, 0%
low counts [2]     : 0, 0%
(mean count < 8)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

log2 fold change (MLE): condition id 1 vs 0 
Wald test p-value: condition id 1 vs 0 
DataFrame with 15470 rows and 6 columns
                 baseMean log2FoldChange     lfcSE        stat       pvalue         padj
                <numeric>      <numeric> <numeric>   <numeric>    <numeric>    <numeric>
20618-Sncg        2565.85       -4.98818 0.1265364    -39.4209  0.00000e+00  0.00000e+00
19132-Prph        2867.79       -6.31069 0.1624458    -38.8480  0.00000e+00  0.00000e+00
13390-Dlx1        1415.58        4.52381 0.1169688     38.6754  0.00000e+00  0.00000e+00
20473-Six3        1653.11        2.74427 0.0734462     37.3644 1.48099e-305 5.72774e-302
19713-Ret         2378.77       -2.22423 0.0725912    -30.6405 3.53246e-206 1.09294e-202
...                   ...            ...       ...         ...          ...          ...
12370-Casp8      373.9910    1.11391e-04 0.1496048 0.000744566     0.999406     0.999664
22446-Xlr3c       15.1539    3.02849e-04 0.5760056 0.000525774     0.999580     0.999717
114674-Gtf2ird2 1463.2548    2.16752e-05 0.0419401 0.000516812     0.999588     0.999717
66172-Med11      727.3440    1.73760e-05 0.0615357 0.000282373     0.999775     0.999839
66647-Nsmce3    1098.2838    4.73089e-06 0.0507149 0.000093284     0.999926     0.999926
runDeseq2BetweenTissue(paste('merged_df_wt_fb-sc_FEATURE_COUNTS_', date, '.csv', sep=''), paste('DEseq2_CNS_wt_fb-sc_', date, '.csv', sep=''), condition_pos="fb")
[1] "../data/results/deseq2/merged_df_wt_fb-sc_FEATURE_COUNTS_20210124.csv"
[1] "========================== RUNNING merged_df_wt_fb-sc_FEATURE_COUNTS_20210124.csv ============================"
[1] "Dataset dimensions:  15211 12"
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
[1] "Deseq2 design:  ~"                   "Deseq2 design:  time + condition_id"

out of 15211 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 4564, 30%
LFC < 0 (down)     : 4259, 28%
outliers [1]       : 0, 0%
low counts [2]     : 0, 0%
(mean count < 8)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

log2 fold change (MLE): condition id 1 vs 0 
Wald test p-value: condition id 1 vs 0 
DataFrame with 15211 rows and 6 columns
                baseMean log2FoldChange     lfcSE         stat       pvalue         padj
               <numeric>      <numeric> <numeric>    <numeric>    <numeric>    <numeric>
15228-Foxg1     12655.63       12.07355  0.290568      41.5516  0.00000e+00  0.00000e+00
22139-Ttr       13816.93        9.34008  0.248094      37.6473  0.00000e+00  0.00000e+00
21375-Tbr1       5778.35        9.22174  0.179648      51.3323  0.00000e+00  0.00000e+00
11878-Arx        3468.81        5.39362  0.119295      45.2124  0.00000e+00  0.00000e+00
16874-Lhx6       1971.34        5.01579  0.138666      36.1718 1.68924e-286 5.13901e-283
...                  ...            ...       ...          ...          ...          ...
66917-Chordc1 3290.53999   -0.000142244 0.0679287 -0.002094018     0.998329     0.998592
19733-Rgn        9.04286   -0.000899893 0.4574050 -0.001967387     0.998430     0.998627
56709-Dnajb12  957.83962   -0.000143522 0.0821821 -0.001746388     0.998607     0.998738
14598-Ggt1      59.80753   -0.000370048 0.2752292 -0.001344509     0.998927     0.998993
66847-Hint3    249.49728   -0.000107992 0.1122038 -0.000962465     0.999232     0.999232
runDeseq2BetweenTissue(paste('merged_df_ko_fb-sc_FEATURE_COUNTS_', date, '.csv', sep=''), paste('DEseq2_CNS_ko_fb-sc_', date, '.csv', sep=''), condition_pos="fb")
[1] "../data/results/deseq2/merged_df_ko_fb-sc_FEATURE_COUNTS_20210124.csv"
[1] "========================== RUNNING merged_df_ko_fb-sc_FEATURE_COUNTS_20210124.csv ============================"
[1] "Dataset dimensions:  15453 12"
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
[1] "Deseq2 design:  ~"                   "Deseq2 design:  time + condition_id"

out of 15453 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 4354, 28%
LFC < 0 (down)     : 3972, 26%
outliers [1]       : 0, 0%
low counts [2]     : 0, 0%
(mean count < 8)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

log2 fold change (MLE): condition id 1 vs 0 
Wald test p-value: condition id 1 vs 0 
DataFrame with 15453 rows and 6 columns
                  baseMean log2FoldChange     lfcSE         stat       pvalue         padj
                 <numeric>      <numeric> <numeric>    <numeric>    <numeric>    <numeric>
19132-Prph         7891.89       -7.76541 0.1555271     -49.9296  0.00000e+00  0.00000e+00
13390-Dlx1         1368.89        5.26154 0.1104935      47.6185  0.00000e+00  0.00000e+00
19713-Ret          4056.98       -3.13184 0.0710962     -44.0508  0.00000e+00  0.00000e+00
18039-Nefl        30598.93       -2.74064 0.0797271     -34.3753 5.89706e-259 2.27818e-255
20618-Sncg         4134.94       -5.65586 0.1663144     -34.0070 1.75365e-253 5.41982e-250
...                    ...            ...       ...          ...          ...          ...
74182-Gpcpd1     4202.3692    4.24146e-05 0.0557002  7.61481e-04     0.999392     0.999619
100041151-Gm3636  190.3273    9.13524e-05 0.1267739  7.20593e-04     0.999425     0.999619
381810-Lpar5       22.1253    1.51774e-04 0.3298917  4.60072e-04     0.999633     0.999762
218236-Fam120a   7176.6258    5.78174e-06 0.0311130  1.85830e-04     0.999852     0.999916
12021-Bard1       273.5795   -6.66996e-07 0.1807347 -3.69047e-06     0.999997     0.999997
runDeseq2BetweenTissue(paste('merged_df_wt_mb-hb_FEATURE_COUNTS_', date, '.csv', sep=''), paste('DEseq2_CNS_wt_mb-hb_', date, '.csv', sep=''), condition_pos="mb")
[1] "../data/results/deseq2/merged_df_wt_mb-hb_FEATURE_COUNTS_20210124.csv"
[1] "========================== RUNNING merged_df_wt_mb-hb_FEATURE_COUNTS_20210124.csv ============================"
[1] "Dataset dimensions:  15168 12"
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
[1] "Deseq2 design:  ~"                   "Deseq2 design:  time + condition_id"

out of 15168 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 2788, 18%
LFC < 0 (down)     : 2764, 18%
outliers [1]       : 0, 0%
low counts [2]     : 0, 0%
(mean count < 6)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

log2 fold change (MLE): condition id 1 vs 0 
Wald test p-value: condition id 1 vs 0 
DataFrame with 15168 rows and 6 columns
                  baseMean log2FoldChange     lfcSE         stat       pvalue         padj
                 <numeric>      <numeric> <numeric>    <numeric>    <numeric>    <numeric>
21416-Tcf7l2     10776.285        4.77109 0.1109733      42.9931  0.00000e+00  0.00000e+00
15402-Hoxa5       6975.547      -10.93360 0.2542923     -42.9962  0.00000e+00  0.00000e+00
15413-Hoxb5       5628.256      -11.06147 0.2988927     -37.0082 8.46723e-300 4.28103e-296
18040-Nefm       19559.473       -1.80678 0.0504091     -35.8424 2.41611e-281 9.16188e-278
20508-Slc18a3      687.587       -3.30223 0.1043722     -31.6390 1.07469e-219 3.26019e-216
...                    ...            ...       ...          ...          ...          ...
399603-Lratd2      898.919   -2.06779e-04 0.2031491 -0.001017870     0.999188     0.999406
192157-Socs7      6726.739   -7.95107e-05 0.0862370 -0.000922002     0.999264     0.999406
26394-Lypla2      5312.284    5.70722e-05 0.0627347  0.000909738     0.999274     0.999406
20447-St6galnac3   716.853   -6.76108e-05 0.1038571 -0.000650998     0.999481     0.999546
20229-Sat1         860.341    1.51078e-05 0.1076705  0.000140315     0.999888     0.999888
runDeseq2BetweenTissue(paste('merged_df_ko_mb-hb_FEATURE_COUNTS_', date, '.csv', sep=''), paste('DEseq2_CNS_ko_mb-hb_', date, '.csv', sep=''), condition_pos="mb")
[1] "../data/results/deseq2/merged_df_ko_mb-hb_FEATURE_COUNTS_20210124.csv"
[1] "========================== RUNNING merged_df_ko_mb-hb_FEATURE_COUNTS_20210124.csv ============================"
[1] "Dataset dimensions:  15455 12"
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
[1] "Deseq2 design:  ~"                   "Deseq2 design:  time + condition_id"

out of 15455 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 2100, 14%
LFC < 0 (down)     : 1847, 12%
outliers [1]       : 0, 0%
low counts [2]     : 0, 0%
(mean count < 7)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

log2 fold change (MLE): condition id 1 vs 0 
Wald test p-value: condition id 1 vs 0 
DataFrame with 15455 rows and 6 columns
              baseMean log2FoldChange     lfcSE         stat      pvalue        padj
             <numeric>      <numeric> <numeric>    <numeric>   <numeric>   <numeric>
75209-Sv2c    1137.375       -1.12658  0.103268     -10.9093 1.04078e-27 1.60578e-23
68659-Gask1b   538.569       -1.44205  0.132954     -10.8462 2.07800e-27 1.60578e-23
18424-Otx2    1602.344        1.53460  0.142873      10.7410 6.53284e-27 3.36550e-23
13599-Ecel1   2913.654       -1.07481  0.102737     -10.4617 1.29455e-25 5.00181e-22
110648-Lmx1a   755.590        1.28084  0.123046      10.4095 2.24428e-25 6.93707e-22
...                ...            ...       ...          ...         ...         ...
76482-Rmc1    1007.089    6.01905e-05 0.0563605  1.06795e-03    0.999148    0.999407
71726-Smug1    992.662    4.68197e-05 0.0524263  8.93058e-04    0.999287    0.999481
66302-Rmdn1    574.932   -5.84485e-05 0.0762691 -7.66346e-04    0.999389    0.999518
77048-Cep83   1347.812   -1.25148e-05 0.0477668 -2.61998e-04    0.999791    0.999856
93841-Uchl4    109.100   -1.05960e-05 0.1623343 -6.52725e-05    0.999948    0.999948
runDeseq2BetweenTissue(paste('merged_df_wt_mb-sc_FEATURE_COUNTS_', date, '.csv', sep=''), paste('DEseq2_CNS_wt_mb-sc_', date, '.csv', sep=''), condition_pos="mb")
[1] "../data/results/deseq2/merged_df_wt_mb-sc_FEATURE_COUNTS_20210124.csv"
[1] "========================== RUNNING merged_df_wt_mb-sc_FEATURE_COUNTS_20210124.csv ============================"
[1] "Dataset dimensions:  15220 12"
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
[1] "Deseq2 design:  ~"                   "Deseq2 design:  time + condition_id"

out of 15220 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 4029, 26%
LFC < 0 (down)     : 3381, 22%
outliers [1]       : 0, 0%
low counts [2]     : 0, 0%
(mean count < 7)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

log2 fold change (MLE): condition id 1 vs 0 
Wald test p-value: condition id 1 vs 0 
DataFrame with 15220 rows and 6 columns
               baseMean log2FoldChange     lfcSE         stat       pvalue         padj
              <numeric>      <numeric> <numeric>    <numeric>    <numeric>    <numeric>
16876-Lhx9     4520.863        4.93418  0.137513      35.8816 5.91356e-282 9.00043e-278
13799-En2      3503.790        9.80198  0.283247      34.6057 2.07241e-262 1.57711e-258
110648-Lmx1a    581.398        3.92737  0.116220      33.7925 2.54406e-250 1.29069e-246
14462-Gata3    1907.172        3.58233  0.107524      33.3165 2.22392e-243 8.46200e-240
231044-Gbx1     475.348       -5.61318  0.187681     -29.9081 1.54535e-196 4.70403e-193
...                 ...            ...       ...          ...          ...          ...
13709-Elf1     591.3987   -2.68991e-04 0.1091934 -0.002463432     0.998034     0.998297
16535-Kcnq1     52.6146    4.69871e-04 0.2142520  0.002193078     0.998250     0.998447
69930-Zfp715  1706.9609   -6.34196e-05 0.0562283 -0.001127896     0.999100     0.999231
56526-Septin6 5952.2199   -3.90871e-05 0.0488340 -0.000800408     0.999361     0.999427
16826-Ldb2    1795.5646   -4.11876e-05 0.0817559 -0.000503788     0.999598     0.999598
runDeseq2BetweenTissue(paste('merged_df_ko_mb-sc_FEATURE_COUNTS_', date, '.csv', sep=''), paste('DEseq2_CNS_ko_mb-sc_', date, '.csv', sep=''), condition_pos="mb")
[1] "../data/results/deseq2/merged_df_ko_mb-sc_FEATURE_COUNTS_20210124.csv"
[1] "========================== RUNNING merged_df_ko_mb-sc_FEATURE_COUNTS_20210124.csv ============================"
[1] "Dataset dimensions:  15438 12"
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
[1] "Deseq2 design:  ~"                   "Deseq2 design:  time + condition_id"

out of 15438 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 2797, 18%
LFC < 0 (down)     : 2637, 17%
outliers [1]       : 0, 0%
low counts [2]     : 0, 0%
(mean count < 7)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

log2 fold change (MLE): condition id 1 vs 0 
Wald test p-value: condition id 1 vs 0 
DataFrame with 15438 rows and 6 columns
                      baseMean log2FoldChange     lfcSE         stat       pvalue         padj
                     <numeric>      <numeric> <numeric>    <numeric>    <numeric>    <numeric>
18424-Otx2            1285.675        3.24715 0.0935820      34.6984 8.33070e-264 1.28609e-259
15417-Hoxb9           5082.155       -4.25565 0.1559455     -27.2893 5.67667e-164 4.38182e-160
13599-Ecel1           3844.974       -1.67415 0.0652495     -25.6577 3.46657e-145 1.78390e-141
319764-A730046J19Rik   438.478       -3.72426 0.1470220     -25.3313 1.44307e-141 5.56952e-138
18423-Otx1             577.358        4.98515 0.2343268      21.2744 1.96152e-100  6.05638e-97
...                        ...            ...       ...          ...          ...          ...
107723-Slc12a6         4150.81    2.11463e-05 0.0539244  0.000392147     0.999687     0.999930
20017-Polr1b           1253.78    2.45220e-05 0.0738857  0.000331891     0.999735     0.999930
100019-Mdn1            4249.81    1.56321e-05 0.0742060  0.000210658     0.999832     0.999961
69524-Esam             1216.60   -9.56169e-06 0.0882814 -0.000108309     0.999914     0.999978
66884-Appbp2           2330.35    1.19663e-06 0.0773064  0.000015479     0.999988     0.999988
runDeseq2BetweenTissue(paste('merged_df_wt_hb-sc_FEATURE_COUNTS_', date, '.csv', sep=''), paste('DEseq2_CNS_wt_hb-sc_', date, '.csv', sep=''), condition_pos="hb")
[1] "../data/results/deseq2/merged_df_wt_hb-sc_FEATURE_COUNTS_20210124.csv"
[1] "========================== RUNNING merged_df_wt_hb-sc_FEATURE_COUNTS_20210124.csv ============================"
[1] "Dataset dimensions:  15252 12"
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
[1] "Deseq2 design:  ~"                   "Deseq2 design:  time + condition_id"

out of 15252 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 2393, 16%
LFC < 0 (down)     : 2081, 14%
outliers [1]       : 0, 0%
low counts [2]     : 0, 0%
(mean count < 7)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

log2 fold change (MLE): condition id 1 vs 0 
Wald test p-value: condition id 1 vs 0 
DataFrame with 15252 rows and 6 columns
                 baseMean log2FoldChange     lfcSE         stat      pvalue        padj
                <numeric>      <numeric> <numeric>    <numeric>   <numeric>   <numeric>
74561-Nkx6-3      219.762        5.77647  0.289990      19.9196 2.75385e-88 4.20017e-84
15567-Slc6a4      435.900        3.95559  0.206299      19.1740 6.09959e-82 4.65155e-78
16870-Lhx2       1144.983        2.28457  0.133638      17.0952 1.61089e-65 8.18976e-62
15399-Hoxa2      1836.224        1.93196  0.120068      16.0905 2.97243e-58 1.13339e-54
20429-Shox2      1168.891        2.05792  0.131967      15.5942 7.96904e-55 2.43088e-51
...                   ...            ...       ...          ...         ...         ...
27364-Srr        1447.007   -2.11829e-05 0.0634633 -3.33782e-04    0.999734    0.999971
100705-Acacb      270.097    3.98149e-05 0.1412191  2.81937e-04    0.999775    0.999971
77519-Zfp266     6531.182    1.33894e-05 0.0821211  1.63044e-04    0.999870    0.999971
20338-Sel1l      8661.133   -7.82597e-06 0.0661583 -1.18292e-04    0.999906    0.999971
170826-Ppargc1b   211.500   -2.08963e-06 0.1570731 -1.33035e-05    0.999989    0.999989
runDeseq2BetweenTissue(paste('merged_df_ko_hb-sc_FEATURE_COUNTS_', date, '.csv', sep=''), paste('DEseq2_CNS_ko_hb-sc_', date, '.csv', sep=''), condition_pos="hb")
[1] "../data/results/deseq2/merged_df_ko_hb-sc_FEATURE_COUNTS_20210124.csv"
[1] "========================== RUNNING merged_df_ko_hb-sc_FEATURE_COUNTS_20210124.csv ============================"
[1] "Dataset dimensions:  15477 12"
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
[1] "Deseq2 design:  ~"                   "Deseq2 design:  time + condition_id"

out of 15477 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 1243, 8%
LFC < 0 (down)     : 1398, 9%
outliers [1]       : 0, 0%
low counts [2]     : 0, 0%
(mean count < 7)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

log2 fold change (MLE): condition id 1 vs 0 
Wald test p-value: condition id 1 vs 0 
DataFrame with 15477 rows and 6 columns
                      baseMean log2FoldChange     lfcSE         stat      pvalue        padj
                     <numeric>      <numeric> <numeric>    <numeric>   <numeric>   <numeric>
319764-A730046J19Rik   490.247      -2.621006 0.1394109     -18.8006 7.46948e-79 1.15605e-74
19713-Ret             5626.669      -0.905542 0.0615947     -14.7016 6.29212e-49 4.86915e-45
246086-Onecut3         966.592       1.174591 0.0900294      13.0467 6.63184e-39 3.42137e-35
14275-Folr1            210.550       3.425958 0.2672890      12.8174 1.30966e-37 5.06741e-34
14462-Gata3           2179.087       1.583849 0.1259300      12.5772 2.81758e-36 8.72154e-33
...                        ...            ...       ...          ...         ...         ...
20318-Sdf4            6243.471    2.49669e-05 0.0432589  0.000577149    0.999540    0.999752
93702-Pcdhgb5          383.688    4.71794e-05 0.0931547  0.000506463    0.999596    0.999752
17210-Mcl1            5847.782   -2.66354e-05 0.0565347 -0.000471133    0.999624    0.999752
83814-Nedd4l          8419.468    3.16319e-05 0.0807421  0.000391764    0.999687    0.999752
26399-Map2k6           875.334    3.06799e-05 0.1081848  0.000283588    0.999774    0.999774

References:

Love MI, Huber W, Anders S (2014). “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.” Genome Biology, 15, 550. doi: 10.1186/s13059-014-0550-8.

LS0tCnRpdGxlOiAiVGlzc3VlIGNvbXBhcmlzb24gQVAtYXhpcyIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKYGBgCgojIyBOb3RlYm9vayBmb3IgcGVyZm9ybWluZyB0aGUgREVTZXEyIGFuYWx5c2lzCgpIZXJlIHdlIHBlcmZvcm0gREVzZXEyIGFuYWx5c2lzIGZvciBlYWNoIHRpc3N1ZSBjb21wYXJpc29uLCBpLmUuIHRvIGlkZW50aWZ5IHRoZSBnZWVucyB0aGF0IGNoYW5nZSBiZXR3ZWVuIHRoZSB0aXNzdWVzLgoKVGhpcyBpcyBwZXJmb3JtZWQgb24gZWFjaCBjb25kaXRpb24gc2VwYXJhdGVseS4KCmBgYHtyfQpsaWJyYXJ5KERFU2VxMikKCnByb2plY3RfZGlyIDwtICcuLi9kYXRhL3Jlc3VsdHMvZGVzZXEyLycKCmRhdGUgPC0gJzIwMjEwMTI0JwoKcnVuRGVzZXEyQmV0d2VlblRpc3N1ZSA8LSBmdW5jdGlvbiAoZmlsZW5hbWUsIG91dHB1dF9maWxlbmFtZSwgY29uZGl0aW9uX3BvcykgewoKICAgIGZpbGVfcGF0aCA8LSBwYXN0ZShwcm9qZWN0X2RpciwgZmlsZW5hbWUsIHNlcD0nJykKICAgIHByaW50KHBhc3RlKCI9PT09PT09PT09PT09PT09PT09PT09PT09PSBSVU5OSU5HICIsIGZpbGVuYW1lLCAiID09PT09PT09PT09PT09PT09PT09PT09PT09PT0iLCBzZXA9IiIpKQogICAgICAjIGh0dHBzOi8vYmlvY29uZHVjdG9yLm9yZy9wYWNrYWdlcy9yZWxlYXNlL3dvcmtmbG93cy92aWduZXR0ZXMvcm5hc2VxR2VuZS9pbnN0L2RvYy9ybmFzZXFHZW5lLmh0bWwKICAgIGNvdW50cyA8LSByZWFkLmNzdihmaWxlX3BhdGgsIGhlYWRlciA9IFRSVUUsIHNlcCA9ICIsIikKICAgIHJvd25hbWVzKGNvdW50cykgPC0gY291bnRzJHVfaWQKCiAgICAjIExldCdzIG1ha2Ugc3VyZSBvdXIgY291bnQgZGF0YSBpcyBpbiBtYXRyaXggZm9ybWF0IGFuZCBpcyBvbmx5IHRoZSBudW1lcmljIGNvbHVtbnMgaS5lLiBldmVyeXRoaW5nIGJ1dCB0aGUgZ2VuZXMKICAgIGNvdW50cyA8LSBjb3VudHNbLDI6bmNvbChjb3VudHMpXQoKICAgIHNhbXBsZV9uYW1lcyA8LSBjb2xuYW1lcyhjb3VudHMpICMgU2FtcGxlIG5hbWVzCiAgICAKICAgICMgTWFrZSBzdXJlIHdlIGRvbid0IGluY2x1ZGUgdGhlIElEIGluIG91ciBjb2x1bW5zCiAgICBjb3VudF9tYXRyaXggPC0gYXMubWF0cml4KGNvdW50cykKICAgIAogICAgIyBXZSBub3cgc2V0IHRoZSByb3cgbmFtZXMgdG8gYmUgdGhlIGdlbmUgSURzCiAgICByb3duYW1lcyhjb3VudF9tYXRyaXgpIDwtIHJvd25hbWVzKGNvdW50cykgCiAgICAKICAgICMgU2VwYXJhdGUgb3V0IGVhY2ggb2YgdGhlIHNhbXBsZSBuYW1lcyB0byBiZSB0aGUgZGlmZmVyZW50IGV4cGVyaW1lbnQgY29uZGl0aW9ucwogICAgY29uZGl0aW9uIDwtIGZhY3RvcihzYXBwbHkoc2FtcGxlX25hbWVzLCBmdW5jdGlvbih4KXtzdWJzdHIoeCwgc3RhcnQgPSAxLCBzdG9wID0gMil9KSkKICAgIHRpbWUgPC0gZmFjdG9yKHNhcHBseShzYW1wbGVfbmFtZXMsIGZ1bmN0aW9uKHgpe3N1YnN0cih4LCBzdGFydCA9IDMsIHN0b3AgPSA0KX0pKQogICAgdGlzc3VlIDwtIGZhY3RvcihzYXBwbHkoc2FtcGxlX25hbWVzLCBmdW5jdGlvbih4KXtzdWJzdHIoeCwgc3RhcnQgPSA1LCBzdG9wID0gNil9KSkKICAgIGNvbmRpdGlvbl9pZCA8LSBmYWN0b3Ioc2FwcGx5KHNhbXBsZV9uYW1lcywgZnVuY3Rpb24oeCl7aWYgKGdyZXBsKGNvbmRpdGlvbl9wb3MsIHgsIGZpeGVkID0gVFJVRSkpIHsxfSBlbHNlIHswfX0pKQoKICAgICMgRm9yIERFc2VxMiB3ZSBuZWVkIHRvIHR1cm4gdGhpcyBpbnRvIGEgZGF0YWZyYW1lIAogICAgc2FtcGxlX2RmID0gZGF0YS5mcmFtZShzYW1wbGVfbmFtZXMgPSBzYW1wbGVfbmFtZXMsIGNvbmRpdGlvbiA9IGNvbmRpdGlvbiwgdGltZSA9IHRpbWUsIHRpc3N1ZSA9IHRpc3N1ZSwgY29uZGl0aW9uX2lkPWNvbmRpdGlvbl9pZCkKICAgIGRkc19tYXQgPC0gREVTZXFEYXRhU2V0RnJvbU1hdHJpeChjb3VudERhdGEgPSBjb3VudF9tYXRyaXgsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb2xEYXRhID0gc2FtcGxlX2RmLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGVzaWduID0gfnRpbWUrY29uZGl0aW9uX2lkKSAjIEhhdmUgdGltZSBhcyBhIGZhY3RvciAoaS5lLiBhIGJhdGNoIGNvcnJlY3Rpb24pCiAgICAKICAgIGRkcyA8LSBlc3RpbWF0ZVNpemVGYWN0b3JzKGRkc19tYXQpCiAgICAKICAgIGRkc19tYXQkZGVzaWduICMgUHJpbnQgdGhlIGRlc2lnbiBvZiB0aGUgZXhwZXJpbWVudAogICAgZGRzIDwtIGVzdGltYXRlU2l6ZUZhY3RvcnMoZGRzX21hdCkKICAgIAogICAgbnVtX3NhbXBsZXNfbWVldGluZ19jcml0ZXJpYSA8LSA2ICAjIGJlIHN0cmljdCBhbmQgZW5mb3JjZSB0aGF0IGF0IGxlYXN0IGhhbGYgdGhlIHNhbXBsZXMgbmVlZCB0byBtZWV0IHRoZSBjcml0ZXJpYSAoaS5lLiBvbmUgZnVsbCBjb25kaXRpb24pCiAgICBudW1fY291bnRzX2luX2dlbmUgPC0gMTAgICMgVGhleSBuZWVkIGF0IGxlYXN0IDEwIGNvdW50cwogICAga2VlcCA8LSByb3dTdW1zKGNvdW50cyhkZHNfbWF0KSA+PSBudW1fY291bnRzX2luX2dlbmUpID49IG51bV9zYW1wbGVzX21lZXRpbmdfY3JpdGVyaWEKICAgIGRkcyA8LSBkZHNfbWF0W2tlZXAsXSAjIE9ubHkga2VlcCB0aGUgcm93cyB3aXRoIHRoaXMgY3JpdGVyaWEKICAgIAogICAgICMgTGV0J3MgcHJpbnQgdGhlIG51bWJlciBvZiByb3dzCiAgICBwcmludChwYXN0ZSgiRGF0YXNldCBkaW1lbnNpb25zOiAiLCBucm93KGRkcyksIG5jb2woZGRzKSkpCiAgICBpZiAobmNvbChkZHMpICE9IDEyKSB7CiAgICAgIHByaW50KHBhc3RlKCI9PT09PT09PT09PT09PT09PT0gV0FSTklORyBXQVJOSU5HIFdBUk5JTkcgWU9VUiBDT0xVTU5TIE1BWSBIQVZFIFRIRSBXUk9ORyBESU1TICA9PT09PT09PT09PT09PT09PT09PT09PT09PT0iLCBzZXA9IiIpKQogICAgfQogICAgCiAgICAjIFJ1biBERXNlcTIKICAgIGRkcyA8LSBERVNlcShkZHMpCiAgICAKICAgICMgQnVpbGQgcmVzdWx0cyB0YWJsZQogICAgcmVzIDwtIHJlc3VsdHMoZGRzKQogICAgcHJpbnQocGFzdGUoIkRlc2VxMiBkZXNpZ246ICIsIGRlc2lnbihkZHMpKSkKCiAgICAjIFN1bWFyaXNlIHRoZSByZXN1bHRzCiAgICBzdW1tYXJ5KHJlcykKICAgIAogICAgIyBMYXN0bHksIHdlIG1heSB3YW50IHRvIHNlZSB0aGUgcmVzdWx0cyBvZiB0aGUgaGlnaCBsb2dmb2xkY2hhbmdlIGUuZy4gPiAxIHdpdGggYSBwYWRqIHZhbHVlIDwgMC4wNQogICAgcmVzX3BhZGowNV9sZmMxIDwtIHJlc3VsdHMoZGRzLCBsZmNUaHJlc2hvbGQ9MikKICAgIHRhYmxlKHJlc19wYWRqMDVfbGZjMSRwYWRqIDwgMC4wNSkKICAgIAogICAgIyBTYXZlIHRoZSByZXN1bHRzCiAgICByZXNfb3JkZXJlZCA8LSByZXNbb3JkZXIocmVzJHB2YWx1ZSksXQogICAgb3V0cHV0X2ZpbGVuYW1lIDwtIHBhc3RlKHByb2plY3RfZGlyLCBvdXRwdXRfZmlsZW5hbWUsIHNlcD0nJykKICAgIHdyaXRlLmNzdihyZXNfb3JkZXJlZCwgZmlsZSA9IG91dHB1dF9maWxlbmFtZSkKICAgIHJldHVybihyZXNfb3JkZXJlZCkKfQoKYGBgCgojIyBSdW4gZWFjaCBvZiB0aGUgc3VwcGxpbWVudGFyeSBERXNlcSAyIGV4cGVyaW1lbnRzCmBgYHtyfQpydW5EZXNlcTJCZXR3ZWVuVGlzc3VlKHBhc3RlKCdtZXJnZWRfZGZfd3RfZmItbWJfRkVBVFVSRV9DT1VOVFNfJywgZGF0ZSwgJy5jc3YnLCBzZXA9JycpLCBwYXN0ZSgnREVzZXEyX0NOU193dF9mYi1tYl8nLCBkYXRlLCAnLmNzdicsIHNlcD0nJyksIGNvbmRpdGlvbl9wb3M9ImZiIikKcnVuRGVzZXEyQmV0d2VlblRpc3N1ZShwYXN0ZSgnbWVyZ2VkX2RmX3d0X2ZiLWhiX0ZFQVRVUkVfQ09VTlRTXycsIGRhdGUsICcuY3N2Jywgc2VwPScnKSwgcGFzdGUoJ0RFc2VxMl9DTlNfd3RfZmItaGJfJywgZGF0ZSwgJy5jc3YnLCBzZXA9JycpLCBjb25kaXRpb25fcG9zPSJmYiIpCnJ1bkRlc2VxMkJldHdlZW5UaXNzdWUocGFzdGUoJ21lcmdlZF9kZl9rb19mYi1tYl9GRUFUVVJFX0NPVU5UU18nLCBkYXRlLCAnLmNzdicsIHNlcD0nJyksIHBhc3RlKCdERXNlcTJfQ05TX2tvX2ZiLW1iXycsIGRhdGUsICcuY3N2Jywgc2VwPScnKSwgY29uZGl0aW9uX3Bvcz0iZmIiKQpydW5EZXNlcTJCZXR3ZWVuVGlzc3VlKHBhc3RlKCdtZXJnZWRfZGZfa29fZmItaGJfRkVBVFVSRV9DT1VOVFNfJywgZGF0ZSwgJy5jc3YnLCBzZXA9JycpLCBwYXN0ZSgnREVzZXEyX0NOU19rb19mYi1oYl8nLCBkYXRlLCAnLmNzdicsIHNlcD0nJyksIGNvbmRpdGlvbl9wb3M9ImZiIikKcnVuRGVzZXEyQmV0d2VlblRpc3N1ZShwYXN0ZSgnbWVyZ2VkX2RmX3d0X2ZiLXNjX0ZFQVRVUkVfQ09VTlRTXycsIGRhdGUsICcuY3N2Jywgc2VwPScnKSwgcGFzdGUoJ0RFc2VxMl9DTlNfd3RfZmItc2NfJywgZGF0ZSwgJy5jc3YnLCBzZXA9JycpLCBjb25kaXRpb25fcG9zPSJmYiIpCnJ1bkRlc2VxMkJldHdlZW5UaXNzdWUocGFzdGUoJ21lcmdlZF9kZl9rb19mYi1zY19GRUFUVVJFX0NPVU5UU18nLCBkYXRlLCAnLmNzdicsIHNlcD0nJyksIHBhc3RlKCdERXNlcTJfQ05TX2tvX2ZiLXNjXycsIGRhdGUsICcuY3N2Jywgc2VwPScnKSwgY29uZGl0aW9uX3Bvcz0iZmIiKQpydW5EZXNlcTJCZXR3ZWVuVGlzc3VlKHBhc3RlKCdtZXJnZWRfZGZfd3RfbWItaGJfRkVBVFVSRV9DT1VOVFNfJywgZGF0ZSwgJy5jc3YnLCBzZXA9JycpLCBwYXN0ZSgnREVzZXEyX0NOU193dF9tYi1oYl8nLCBkYXRlLCAnLmNzdicsIHNlcD0nJyksIGNvbmRpdGlvbl9wb3M9Im1iIikKcnVuRGVzZXEyQmV0d2VlblRpc3N1ZShwYXN0ZSgnbWVyZ2VkX2RmX2tvX21iLWhiX0ZFQVRVUkVfQ09VTlRTXycsIGRhdGUsICcuY3N2Jywgc2VwPScnKSwgcGFzdGUoJ0RFc2VxMl9DTlNfa29fbWItaGJfJywgZGF0ZSwgJy5jc3YnLCBzZXA9JycpLCBjb25kaXRpb25fcG9zPSJtYiIpCnJ1bkRlc2VxMkJldHdlZW5UaXNzdWUocGFzdGUoJ21lcmdlZF9kZl93dF9tYi1zY19GRUFUVVJFX0NPVU5UU18nLCBkYXRlLCAnLmNzdicsIHNlcD0nJyksIHBhc3RlKCdERXNlcTJfQ05TX3d0X21iLXNjXycsIGRhdGUsICcuY3N2Jywgc2VwPScnKSwgY29uZGl0aW9uX3Bvcz0ibWIiKQpydW5EZXNlcTJCZXR3ZWVuVGlzc3VlKHBhc3RlKCdtZXJnZWRfZGZfa29fbWItc2NfRkVBVFVSRV9DT1VOVFNfJywgZGF0ZSwgJy5jc3YnLCBzZXA9JycpLCBwYXN0ZSgnREVzZXEyX0NOU19rb19tYi1zY18nLCBkYXRlLCAnLmNzdicsIHNlcD0nJyksIGNvbmRpdGlvbl9wb3M9Im1iIikKcnVuRGVzZXEyQmV0d2VlblRpc3N1ZShwYXN0ZSgnbWVyZ2VkX2RmX3d0X2hiLXNjX0ZFQVRVUkVfQ09VTlRTXycsIGRhdGUsICcuY3N2Jywgc2VwPScnKSwgcGFzdGUoJ0RFc2VxMl9DTlNfd3RfaGItc2NfJywgZGF0ZSwgJy5jc3YnLCBzZXA9JycpLCBjb25kaXRpb25fcG9zPSJoYiIpCnJ1bkRlc2VxMkJldHdlZW5UaXNzdWUocGFzdGUoJ21lcmdlZF9kZl9rb19oYi1zY19GRUFUVVJFX0NPVU5UU18nLCBkYXRlLCAnLmNzdicsIHNlcD0nJyksIHBhc3RlKCdERXNlcTJfQ05TX2tvX2hiLXNjXycsIGRhdGUsICcuY3N2Jywgc2VwPScnKSwgY29uZGl0aW9uX3Bvcz0iaGIiKQoKYGBgCgojIyMgUHJpbnQgc2Vzc2lvbiBpbmZvCmBgYHtyfQpzZXNzaW9uSW5mbygpCmBgYAoKIyMjIFJlZmVyZW5jZXM6CgpMb3ZlIE1JLCBIdWJlciBXLCBBbmRlcnMgUyAoMjAxNCkuIOKAnE1vZGVyYXRlZCBlc3RpbWF0aW9uIG9mIGZvbGQgY2hhbmdlIGFuZCBkaXNwZXJzaW9uIGZvciBSTkEtc2VxIGRhdGEgd2l0aCBERVNlcTIu4oCdIEdlbm9tZSBCaW9sb2d5LCAxNSwgNTUwLiBkb2k6IDEwLjExODYvczEzMDU5LTAxNC0wNTUwLTguCg==